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Abstract: 

This paper introduces and presents multiset function from a very unique and different way. It is build on 

the studies from previous research works. Some of the basic principles and properties of functions are 

studied in multiset context such as injection, surjection, bijection, identity, and constant functions. The 

composition of functions is studied. Similarity and dominance relations are also studied among others. 
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1. Introduction 

Multiset as a new paradigm shift of science and mathematics which is fast moving to take over the 

affairs of the world for its ability to allow its elements to repeat itself in a set. These assertions were 

against the Cantor’s resolutions that no element should be repeated in a set. He stated that each 

element should be distinct and unique. However, in science and in ordinary life concept found this  

found faulty. In the physical world there is enormous repetition. For instance, there are many hydrogen 

atoms, many water molecule, many strands of identical DNA e.t.c.  

Multiset (mset for short) then is a set in which repetition is allowed. In fact, the term was first suggested 

by N.G. De. Brujin to Knuth in a private communication as the generalization of the crisp theory. Thus 

every set is a mset, but the reverse is not true [4]. Other works on mset were found in [3], [5],[9 ], [12]. 

[13] and [14]. Early researchers gave several names to mean mset, such as bags, heap, fireset (finitely 

repeated set) [15].   

As mentioned earlier, elements are allowed to repeat in an mset. The number of copies ([14], p.3) 

prefers to call it ‘Multiples’ of an element in a mset which may be finite or infinite, positive or negative. 

Their multiplicities jointly determined its cardinality. 

Hickman, [14] was among the earliest mathematicians to begin to work on functions between one mset 

and another. Blizard, [1] in his doctoral thesis axiomatize the functions between two msets. He worked 

on the special types of such functions e.g injection, surjection and bijection. Girish and John in [12] from 

a different perspective study the functions between two msets using the principle of relations between 

two msets. They extended the study to include the study of constant and identity mset functions. 

In this paper, we redefine mset functions carrying sufficient ingredients to make the mset function 

viable to further studies. In section two, some of the basic definitions, operations and notations of mset 

functions are presented. Some algebraic properties of our approach are studied in section three and 

section four characterizes the summary of our findings and directions for further studies.    
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2.1 Preliminary definitions and notations 

Definition 2.1.1[1]. An mset  𝐴 over the set  𝑋 can be defined as a function  𝐶𝐴: 𝑋 → ℕ = {0,1,2, … } where 

the value  𝐶𝐴(𝑥) denote the number of times or multiplicity or count function of 𝑥  𝑖𝑛 𝐴 . For example, Let 

𝐴 = [𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧], then 𝐶𝐴(𝑥) = 3, 𝐶𝐴(𝑦) = 3, 𝐶𝐴(𝑧) = 2. [𝐶𝐴(𝑥) = 0 ⇔ 𝑥 ∉ 𝐴]. The mset 𝑀 over 

the set 𝑋 is said to be empty if 𝐶𝑀(𝑥) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. We denote the empty mset by ∅. Then 𝐶∅(𝑥) =

0, ∀ 𝑥 ∈ 𝑋. if 𝐶𝐴(𝑥) > 0, 𝑡ℎ𝑒𝑛 𝑥 ∈ 𝐴. We denote the class of all finite msets  𝑀 over the set 𝑋 by 𝑀(𝑋) 

throughout the study. If 𝐶𝐴(𝑥) = 𝑛 then the membership of  𝑥 in 𝐴 can be denoted by 𝑥 ∈𝑛 𝐴, meaning 𝑥 

belong to 𝐴 exactly 𝑛 times. 

Definition 2.1.2[1]: The cardinality of a mset 𝑀 denoted |𝑀| or 𝑐𝑎𝑟𝑑(𝑀) is the sum of all the multiplicities 

of its elements given by the expression  |𝑀|  = ∑ 𝑐𝐴(𝑥)𝑥∈𝑋  . 

Note: Presentation of mset on paper work became  a challenged as every researcher has his thought 

in that aspect . However the use of square brackets was adopted in ([1], [9],[11]) to represent an 

mset and ever since then it has become a standard. For example if the multiplicity of the elements 

𝑥, 𝑦 and 𝑧 in an mset 𝑀 are 2,3 and 2 respectively, then the mset 𝑀 can be represented as 𝑀 =
[𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧, ], others may put it like [𝑥, 𝑦, 𝑧]2,3,2 or [𝑥2, 𝑦3, 𝑧2]  or 

[𝑥2, 𝑦3, 𝑧2] 𝑜𝑟 [2 𝑥⁄ , 3 𝑦⁄ , 2 𝑧⁄ ]  depending on one’s  taste or expediencies. But for conveniences 

sake, curly bracket can be used instead of the square bracket. 

Definition 2.1.3[2]: Let 𝑀 be an mset drawn from a set 𝑋. The support set of 𝑀 denoted by  𝑀∗ is a subset 

of  𝑋  given by   𝑀∗ = {𝑥 𝜖 𝑋: 𝐶𝑀(𝑥) > 0}. 𝑀∗ is also called root set.  

Definition 2.1.4[1](Equal msets): Two msets   𝐴, 𝐵 ∈ 𝑀(𝑋)  are said to be equal, denoted  𝐴 = 𝐵 if and 

only if for any objects 𝑥 ∈ 𝑋, 𝐶𝐴(𝑥) = 𝐶𝐵(𝑥). This is to say that  𝐴 = 𝐵 if the multiplicity of every 

element in 𝐴 is equal to its multiplicity in 𝐵 and conversely.  

Note that  𝐴 = B ⟹𝐴∗ = 𝐵∗ , though the converse  need  not  hold. For example, let   𝐴 =
[𝑎, 𝑎, 𝑏, 𝑏, 𝑐] 𝑎𝑛𝑑 𝐵 = [𝑎, 𝑎, 𝑏. 𝑏, 𝑏, 𝑐, 𝑐] 𝑤ℎ𝑒𝑟𝑒  𝐴∗ = 𝐵∗ = {𝑎, 𝑏, 𝑐} 𝑏𝑢𝑡 𝐴 ≠ 𝐵. 

Definition 2.1.5[1](Submultiset): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). 𝐴 is a submultiset (submset for short) of 𝐵, denoted by 

𝐴 ⊆ 𝐵 𝑜𝑟 𝐵 ⊇ 𝐴, if 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. Also if  𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐴 ≠ 𝐵, then 𝐴 is called proper 

submset of 𝐵 denoted by 𝐴 ⊂ 𝐵. In other words 𝐴 ⊂ 𝐵 if 𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑎𝑛 𝑥 ∈ 𝑋  such 

that 𝐶𝐴(𝑥) < 𝐶𝐵(𝑥). We assert that a mset 𝐵 is called the parent mset in relation to the mset 𝐴. 

Theorem 2.1.6[11]: Let  𝑀, 𝑁 ∈ 𝑀(𝑋),  𝑀 ⊆ 𝑁 ⇒ 𝑀∗ ⊆ 𝑁∗. 

Note that: For any two msets 𝐴, 𝐵 ∈ 𝑀(𝑋), 𝐴 = 𝐵  if and only if 𝐴 ⊆ 𝐵 and. 𝐵 ⊆ 𝐴. 

Definition. 2.1.7[1](Regular or Constant mset): An mset 𝐴  over the set 𝑋 is called regular or constant if all 

its elements are of the same multiplicities, i.e for any 𝑥, 𝑦 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ≠ 𝑦, 𝐶𝐴(𝑥) = 𝐶𝐴(𝑦). 

Definition 2.1.8 [17](Power mset): Let 𝐴 ∈ 𝑀(𝑋). The power mset of 𝐴, denoted ℘(𝐴), is defined 

as the mset of all submsets of 𝐴 i.e ℘(𝐴) = {𝑚 𝑝⁄ ∣ 𝑝 ⊆ 𝐴 𝑎𝑛𝑑 𝑝 ∈𝑛 ℘(𝐴)}. For instance if 𝐴 =

[𝑥, 𝑦]2,1 = [𝑥, 𝑥, 𝑦]. Then  ℘(𝐴) = [∅, {𝑥}, {𝑥}, {𝑥}2, {𝑦}, {𝑥, 𝑦}, {𝑥, 𝑦}, [𝑥, 𝑦]2,1].  
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In this case the cardinality of  ℘(𝐴) is given by 𝐶𝑎𝑟𝑑(℘(A)) = 2𝐶𝑎𝑟𝑑(𝐴) = 23 = 8, for any mset 

𝐴. 

For any 𝑁 ⊆ 𝑀 such that 𝑁 ≠ ∅. 

Now 𝑁 ∈𝑘 ℘(𝑀) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑘 = ∏𝑧 (
|𝑀|𝑧
|𝑁|𝑧

). Where ∏𝑧 is the product taken over distinct 

elements  𝑧 of the mset  𝑁 . |𝑀|𝑧 = 𝑚  𝑖𝑓𝑓  𝑧 ∈𝑚 𝑀 𝑎𝑛𝑑 |𝑁|𝑧 = 𝑛  𝑖𝑓𝑓  𝑧 ∈𝑛 𝑁. 

Note that (
|𝑀|𝑧
|𝑁|𝑧

) = (𝑚
𝑛

) =
𝑚!

𝑛!(𝑚−𝑛)!
. 

We denote the root set of  ℘(𝑀) by  ℘∗(𝑀). 

Definition 2.1.9[17](Power set of an mset): Let  𝑀 ∈ 𝑀(𝑋), the power set of  𝑀 is just the root set  

℘∗(𝑀).   

Example 2.1.10: Let 𝑀 = {6 𝑥⁄ , 3 𝑦⁄ } be an mset and let ℘(𝑀) denote the power mset, if {3 𝑥⁄ } 

is a member of ℘(M), then  {3 𝑥⁄ } repeats  𝑘 = (6
3
) = 20 𝑡𝑖𝑚𝑒𝑠. Also, if {4 𝑥⁄ , 2 𝑦⁄ } is a member 

of  ℘(M), then {4 𝑥⁄ , 2 𝑦⁄ } repeats 𝑘 = (6
4
)(3

2
) = 45 𝑡𝑖𝑚𝑒𝑠. 

Theorem 2.1.11[17](Cardinality of power set): Let 𝑀 ∈ 𝑀(𝑋) such that                                                       

𝑀 = {
𝑚1

𝑥1
⁄ ,

𝑚2
𝑥2

⁄ , … ,
𝑚𝑛

𝑥𝑛
⁄ }, then  𝐶𝑎𝑟𝑑(℘∗(𝑀)) = ∏ (1 + 𝑚𝑖)𝑛

𝑖=1 .  

Definition 2.1.12[17](Whole submset): A submset 𝑁 of 𝑀 is a whole submset of 𝑀  

if  𝐶𝑁(𝑥) = 𝐶𝑀(𝑥) ∀ 𝑥 ∈ 𝑁. 

Definition 2.1.13[17](Partial Whole Submset): A submset 𝑁 of  𝑀  is a partial whole submset of  𝑀 if 

there exist an element 𝑥 ∈ 𝑁  such that  𝐶𝑁(𝑥) = 𝐶𝑀(𝑥). 

Definition 2.1.14[17](Full Submset): A submset  𝑁 of  𝑀  is full submset if  𝑀∗ = 𝑁∗ 

Example 2.1.15: Let 𝑀 = {2 𝑥⁄ , 3 𝑦⁄ , 5 𝑧⁄ } be an mset. The following are some of the submset 

which are whole submsets, partial whole submset and full submets. 

(a) A submset {2 𝑥⁄ , 3 𝑦⁄ } is a whole submset and partial whole submset of  𝑀 but it is not 

full submset of 𝑀. 

(b) A submset {1 𝑥⁄ , 3 𝑦⁄ , 2 𝑧⁄ } is a partial whole submset and full submset of 𝑀 but it is not 

a whole submet of 𝑀. 

(c) A submset {1 𝑥⁄ , 3 𝑦⁄ } is a partial whole submset of 𝑀 which is neither a whole submet 

nor full submset of 𝑀. 

Definition 2.1.16[17, 15] (Power whole mset): Let 𝑀 ∈ 𝑀(𝑋) be an mset. The power whole mset 

of 𝑀 denoted by 𝑃𝑊(𝑀) is defined as the set of all whole submsets of 𝑀. The cardinality of the 

support set 𝑃𝑊(𝑀) is 2𝑛 where n is the cardinality of the support set  𝑀∗, i.e 𝑛 =∣ 𝑀∗ ∣. 
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Definition 2.1.17[17] (Power full mset): Let 𝑀 ∈ 𝑀(𝑋) be an mset. Then the power full mset of 

𝑀 denoted, 𝑃𝐹(𝑀), is defined as the set of all full submsets of  𝑀. The cardinality of 𝑃𝐹(𝑀) is 

the product of the counts of the elements in 𝑀. 

That is  𝑃𝐹(𝑀) = {𝑦/ 𝑦 ⊆ 𝑀}. 

Examples 2.1.18: Let 𝑀 = {2 𝑥⁄ , 3 𝑦⁄ } be a mset. Then 𝑃𝑊(𝑀) = {{2 𝑥⁄ }, {3 𝑦⁄ }, 𝑀, ∅} and 

𝑃𝐹(𝑀) = {{2 𝑥⁄ , 1 𝑦⁄ }, {2 𝑥⁄ , 2 𝑦⁄ }, {2 𝑥⁄ , 3 𝑦⁄ }, {1 𝑥⁄ , 1 𝑦⁄ }, {1 𝑥⁄ , 2 𝑦⁄ }, {1 𝑥⁄ , 3 𝑦⁄ }, }.  

Definition 2.1.19 [9] (⋀ and ⋁ notations): The notations ⋀ and ⋁ denote the minimum and maximum 

operator respectively, for instance;  

 𝐶𝐴(𝑥)⋀𝐶𝐴(𝑦) = 𝑚𝑖𝑛{𝐶𝐴(𝑥), 𝐶𝐴(𝑦)} 𝑎𝑛𝑑 𝐶𝐴(𝑥)⋁𝐶𝐴(𝑦) = 𝑚𝑎𝑥{𝐶𝐴(𝑥), 𝐶𝐴(𝑦)}. 

2.2   mset operations. 

Definition 2.2.1[9] (msets union): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The union of  𝐴 𝑎𝑛𝑑 𝐵 denoted  𝐴 ∪ 𝐵 is the mset 

defined by   𝐶𝐴∪𝐵(𝑥) = 𝑚𝑎𝑥{𝐶𝐴(𝑥), 𝐶𝐵(𝑥)},  

Definition 2.2.2[9] (msets intersection) Let 𝐴, 𝐵 ∈ 𝑀(𝑋).The intersection of two mset  𝐴 and 𝐵 denoted by 

𝐴 ∩ 𝐵, is the mset for which   

𝐶𝐴∩𝐵(𝑥) = 𝑚𝑖𝑛{𝐶𝐴(𝑥), 𝐶𝐵(𝑥)}  ∀ 𝑥 ∈ 𝑋.  

Definition 2.2.3[9] ( mset addition): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The direct sum or arithmetic addition of  𝐴 and 𝐵 

denoted by 𝐴 + 𝐵 or 𝐴 ⊎ 𝐵 is the mset defined by 

 𝐶𝐴+𝐵(𝑥) = 𝐶𝐴(𝑥) + 𝐶𝐵(𝑥)  ∀ 𝑥 ∈ 𝑋. 

Note that ∣ 𝐴 ⊎ 𝐵 ∣= ∣ 𝐴 ∪ 𝐵 ∣ + ∣ 𝐴 ∩ 𝐵 ∣. 

Definition 2.2.4[9] (mset difference): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then the difference of 𝐵 from 𝐴, denoted by 𝐴 − 𝐵 

is the mset such that 𝐶𝐴−𝐵(𝑥) = 𝑚𝑎𝑥{𝐶𝐴(𝑥) − 𝐶𝐵(𝑥), 0} ∀ 𝑥 ∈ 𝑋. If 𝐵 ⊆ 𝐴, then 

𝐶𝐴−𝐵(𝑥) = 𝐶𝐴(𝑥) − 𝐶𝐵(𝑥). 

It is sometimes called the arithmetic difference of 𝐵 from 𝐴. If 𝐵 ⊈ 𝐴 this definition still holds. 

It follows that the deletion of an element 𝑥 from an mset 𝐴 give rise to a new mset  𝐴′ = 𝐴 − 𝑥 

such that 𝐶𝐴′(𝑥) = 𝑚𝑎𝑥{𝐶𝐴(𝑥) − 1,0}. 

Definition 2.2.5[8] (mset symmetric difference): Let 𝑋  be a set and 𝐴, 𝐵 ∈ 𝑀(𝑋) Then the symmetric 

difference, denoted  𝐴∆𝐵, is defined by   𝐶𝐴∆𝐵(𝑥) = |𝐶𝐴(𝑥) − 𝐶𝐵(𝑥)|. 

Note that  𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴). 

Definition 2.2.6[8] (mset complement): Let 𝐺 = {𝐴1, 𝐴2, … , 𝐴𝑛} be a family of finite msets 

generated from the set 𝑋. Then, the maximum mset 𝑍 is defined by 𝐶𝑍(𝑥) =

𝑚𝑎𝑥𝐴∈𝐺𝐶𝐴(𝑥) for all 𝐴 ∈ 𝐺 and 𝑥 ∈ 𝑋. The Complement of an mset  𝐴, denoted by 𝐴,̅ is 

defined: 

�̅� = 𝑍 − 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐶�̅�(𝑥) = 𝐶𝑍(𝑥) − 𝐶𝐴(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋.  
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Note that 𝐴𝑖 ⊆ 𝑍 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 

Definition 2.2.7[8] (Multiplication by Scalar): Let  𝐴 ∈ 𝑀(𝑋), then the scalar multiplication denoted by 

𝑏. 𝐴 is defined by 𝐶𝑏.𝐴(𝑥) = 𝑏. 𝐶𝐴(𝑥), 𝑎𝑛𝑑 𝑏 ∈ {1,2,3, … }. 

Definition 2.2.8[8] (Arithmetic Multiplication): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then the Arithmetic Multiplication 

denoted by 𝐴. 𝐵 is defined by  𝐶𝐴.𝐵(𝑥) = 𝐶𝐴(𝑥). 𝐶𝐵(𝑥)  ∀ 𝑥 ∈ 𝑋. 

Definition 2.2.9[7] (Raising to an Arithmetic Power): Let  𝐴 ∈ 𝑀(𝑋), then  𝐴 raised to power 𝑛  denoted 

by  𝐴𝑛 is defined:  

𝐶𝐴𝑛(𝑥) = (𝐶𝐴(𝑥))
𝑛

 𝑓𝑜𝑟 𝑛 ∈ {0,1,2,3, … } and 𝐶𝐴(𝑥) > 0. 

Proposition 2.2.10: For any  𝐴 ≠ ∅ such that  𝐴 ∈ 𝑀(𝑋), then  (𝐴𝑛)∗ = 𝐴∗  for 𝑛 ∈ {0,1,2 … } 

Proof: Now let 𝑥 ∈ (𝐴𝑛)∗, then  𝐶𝐴𝑛(𝑥) > 0. That is (𝐶𝐴(𝑥))
𝑛

> 0. 

 (𝐶𝐴(𝑥))
𝑛

> 0 ⇒ 𝐶𝐴(𝑥) > 0 (by definition 2.1.3). Thus  𝑥 ∈ 𝐴∗ 

In particular  (𝐴𝑛)∗ ⊆ 𝐴∗       (i) 

Similarly let 𝑦 ∈ 𝐴∗. Then 𝐶𝐴(𝑦) > 0 (by definition 2.1.3) 

Clearly  𝐶𝐴(𝑦) > 0 ⇒  𝐶𝐴𝑛(𝑦) > 0 𝑓𝑜𝑟 𝑛 = {0,1,2 … } 

Now   (𝐶𝐴(𝑦))
𝑛

> 0 ⇒ 𝐶𝐴𝑛(𝑦) > 0 

In particular  𝑦 ∈ 𝐴∗ (by definition 2.2.9) 

Thus  𝐴∗ ⊆ (𝐴𝑛)∗        (ii) 

Now from (i) and (ii) above, it is clear that   𝐴∗ = (𝐴𝑛)∗ 

2.3    mset functions. 

Definiton 2.3.1: Let 𝑋 be a set and let 𝐴, 𝐵 ∈ 𝑀(𝑋). We defined the mset function 𝑓: 𝐴 → 𝐵 as just the 

function 𝑓: 𝐴∗ → 𝐵∗ such that for any 𝑥 ∈ 𝑋, 𝐶𝑓(𝐴)(𝑓(𝑥)) = 𝐶𝐴(𝑥). Where    

  𝑓(𝐴) = {
𝑚𝑖

𝑓(𝑥𝑖)
∶  𝑥 ∈ 𝐴,  𝑚𝑖 =  𝐶𝑓(𝐴)(𝑓(𝑥𝑖)) = 𝐶𝐴(𝑥𝑖) }. 

Example 2.3.2: Let  𝑋 = {𝑥, 𝑦}, 𝑌 = {𝑧1, 𝑧2, 𝑧3}  be a sets. Also, let  𝐴 = {𝑥, 𝑦}2,3 and 𝐵 = {𝑧1, 𝑧2, 𝑧3}3,4,5, 

the function 𝑓: 𝐴 → 𝐵 is an mset function if we define   𝑓(𝑥) = 𝑧1 𝑎𝑛𝑑  𝑓(𝑦) = 𝑧2 ∀ 𝑥 ∈ 𝑋. Since  

𝑓: 𝐴∗ = {𝑥, 𝑦} → {𝑧1, 𝑧2} = 𝐵∗ is a function and  𝑓({𝑥, 𝑦}2,3) = {𝑧1, 𝑧2}2,3 ⊆ {𝑧1, 𝑧2, 𝑧3}3,4,5. 

Hence 𝑓 is a mset function and  𝑓(𝐴) = {𝑧1, 𝑧2}2,3. 

Hence 𝑓 is a mset function and  𝑓(𝐴) = {𝑧1, 𝑧2}2,3 

Definition 2.3.3(Constant mset function): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The constant mset function 𝑓: 𝐴 → 𝐵 is just  

the mset function 𝑓: 𝐴 → 𝐵 such that   𝑓: 𝐴∗ → 𝐵∗ is constant. 

Definition 2.3.4(Identity mset function): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The identity mset function 𝑓: 𝐴 → 𝐵 is just 

the mset function 𝑓: 𝐴 → 𝐵 such that   𝑓: 𝐴∗ → 𝐵∗ is identity. 
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Definition 2.3.5(Injective mset function):  Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The mset function 𝑓: 𝐴 → 𝐵 is said to be 

injective if  

 (i) 𝑓: 𝐴∗ → 𝐵∗ is injective and  

(ii)  ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑓(𝑥)). 

Example 2.3.6: Let  𝑋 = {1, −1, 𝑖, −𝑖}  be set, where  𝑖 = √−1.  Let  𝐴 = {1, −1}2,1,                                   

𝐵 = {1, −1, 𝑖, −𝑖}5,3,2,2  be msets. We defined our function as  𝑓(𝑥) = 𝑥, ∀ 𝑥 ∈ 𝑋. 𝑓(1) = 1  and  

𝑓(−1) = −1. 

Clearly  𝑓: 𝐴∗ = {1, −1, 𝑖, −𝑖} → {1, −1} = 𝐵∗ is a injective function. 

and  𝐶𝐴(1) = 2 ≤ 𝐶𝐵(𝑓(1)) = 5, 𝐶𝐴(−1) = 1 ≤ 𝐶𝐵(𝑓(−1)) = 3. 

Hence 𝑓 is an injective mset function. 

Definition 2.3.7(Surjective mset function): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The mset function  𝑓: 𝐴 → 𝐵 is said to be 

surjective if   

(i) 𝑓: 𝐴∗ → 𝐵∗ is surjective and  

(ii)  ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≥ 𝐶𝐵(𝑓(𝑥)). 

Example 3.3.8: Let  𝑋 = {1, −1, 𝑖, −𝑖}  be set, where  𝑖 = √−1. Let  𝐴 = {1, −1, 𝑖, −𝑖}4,4,3,3, 𝐵 =

{1, −1}2,1, be msets. We defined our function as  𝑓(𝑥) = 𝑥2, ∀ 𝑥 ∈ 𝑋.  𝑓(1) = 12 = 1  and 

  𝑓(−1) = (−1)2 = 1, 𝑓(𝑖) = (𝑖)2 = −1 𝑎𝑛𝑑 𝑓(−𝑖) = (−𝑖)2 = −1. 

Clearly  𝑓: 𝐴∗ = {1, −1, 𝑖, −𝑖} → {1, −1} = 𝐵∗ is a surjective function. 

Thus 𝐶𝐴(1) = 4 ≥ 𝐶𝐵(𝑓(1)) = 𝐶𝐵(1) = 2 , 𝐶𝐴(−1) = 4 ≥ 𝐶𝐵(𝑓(−1)) = 𝐶𝐵(1) = 2, 

                 𝐶𝐴(𝑖) = 3 ≥ 𝐶𝐵(𝑓(𝑖)) = 𝐶𝐵(−1) = 1, 𝑎𝑛𝑑  𝐶𝐴(−𝑖) = 3 ≥ 𝐶𝐵(𝑓(−𝑖)) = 𝐶𝐵(−1) = 1.  

Hence 𝑓 is a surjective mset function. 

Definition 2.3.9(Bijective mset function): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The mset function 𝑓: 𝐴 → 𝐵 is said to be a 

bijective if  

 (i) 𝑓: 𝐴∗ → 𝐵∗ is bijective and  

(ii)  ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) = 𝐶𝐵(𝑓(𝑥)). 

Example 2.3.10: Let  𝑋 = {1,2,3,8,27} be a set. Let  𝐴 = {1,8,27}2,4,3, 𝐵 = {1,2,3}2,4,3, be msets. We 

defined our function as  𝑓(𝑥) = √𝑥
3

, ∀ 𝑥 ∈ 𝑋.  𝑓(1) = √1
3

= 1,  𝑓(8) = √8
3

= 2  and                   

 𝑓(27) = √27
3

= 3. 

Clearly 𝑓: 𝐴∗ = {1,8,27} → {1,2,3} = 𝐵∗ is a bijective function. 

Thus  𝐶𝐴(1) = 2 = 𝐶𝐵𝑓(1) = 2, 𝐶𝐴(8) = 4 = 𝐶𝐵𝑓(8) = 4, 𝐶𝐴(27) = 3 = 𝐶𝐵𝑓(27) = 3.   

Hence 𝑓 is a bijective mset function. 
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Definition 2..3.11(Inverse mset function): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The inverse of the mset function                

𝑓: 𝐴 → 𝐵 denoted  𝑓−1: 𝐵 → 𝐴 is just the function  𝑓−1: 𝐵∗ → 𝐴∗. 

Definition 2.3.12(Composition of mset function): Let 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 ∈ 𝑀(𝑋). We defined the composition 

of mset function of  𝑓: 𝐴 → 𝐵 and  𝑔: 𝐵 → 𝐶  denoted as  𝑔ᴏ𝑓: 𝐴 → 𝐶  as just the composition             

𝑔ᴏ𝑓: 𝐴∗ → 𝐶∗, such that  𝐶𝑔ᴏ𝑓(𝐴)(𝑔ᴏ𝑓(𝑥)) = 𝐶𝐴(𝑥). 

Definition 2.3.13(Similarity Relation): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). 𝐴  and  𝐵 are said to be similar denoted 𝐴~𝐵  if 

there exist a bijection between  𝐴 and 𝐵. 

Definition 2.3.14(Dominance Relation): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then 𝐴 is dominated by 𝐵 denoted 𝐴 ≼ 𝐵 if 

there exist an injection between 𝐴  and 𝐵. 

 

3. Some Related  Results. 

Proposition 3.1: Let  𝐴, 𝐵 ∈ 𝑀(𝑋). The mset function 𝑓: 𝐴 → 𝐵 is a bijective mset function, if and only if 

𝑓−1: 𝐵 → 𝐴 is bijective. 

Proof: Given that  𝑓: 𝐴 → 𝐵 is bijective, then. 

𝑓: 𝐴∗ → 𝐵∗  is bijective and (by definition 2.3.8)                 (i) 

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) = 𝐶𝐵(𝑓(𝑥)) and        (ii) 

Since from (i) it follows that 𝑓−1: 𝐵∗ → 𝐴∗ is bijective     (iii) 

Now we show that  ∀𝑦 (∀ 𝑦 ∈ 𝐵∗ ⇒ 𝐶𝐵(𝑦) = 𝐶𝐴(𝑓−1(𝑦)) 

And for every  𝑦 ∈ 𝐵∗  there exist 𝑥 ∈ 𝐴∗  such that 𝑓(𝑥) = 𝑦.    (iv) 

In particular,  𝑥 = 𝑓−1(𝑦) (from (i) above)       (v) 

 And from (v), we have  𝐶𝐴(𝑥) = 𝐶𝐴(𝑓−1(𝑦)) and 

  𝐶𝐵(𝑓(𝑥)) = 𝐶𝐴(𝑓−1(𝑦))        (vi) 

In particular,  𝐶𝐵(𝑦) = 𝐶𝐴(𝑓−1(𝑦)) [from (iv) above]     (vii) 

Thus from (iii) and (vii) above, it is clear that 

𝑓−1: 𝐵 → 𝐴 is bijective. (by definition 2.3.8) 

Conversely, let  𝑓−1: 𝐵 → 𝐴 be bijective, we show that 𝑓: 𝐴 → 𝐵 is bijective. 

Since  𝑓−1: 𝐵∗ → 𝐴∗ is bijective (by definition 2.3.8)     (viii) 

In particular  (𝑓−1)−1: 𝐴∗ → 𝐵∗ is bijective.      (ix) 

Also,  ∀𝑦 (∀ 𝑦 ∈ 𝐵∗ ⇒ 𝐶𝐵(𝑦) = 𝐶𝐴((𝑓−1(𝑦)) by definition 2.3.8    (x) 

But for all 𝑥 ∈ 𝐴∗ there exist 𝑦 ∈ 𝐵∗ such that 

𝑓−1(𝑦) = 𝑥          (xi) 
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In particular 𝑦 = 𝑓(𝑥)         (xii) 

Now substituting (xi) and (xii) in (x) above, we have 

𝐶𝐵(𝑓(𝑥)) = 𝐶𝐴(𝑥)  𝑥 ∈ 𝐴∗. 

In particular, we have   

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) = 𝐶𝐵(𝑓(𝑥))       (xiii) 

Thus from (ix) and (xiii), we have  𝑓: 𝐴 → 𝐵  bijective. 

Proposition 3.2: Let  𝐴, 𝐵 ∈ 𝑀(𝑋). If the mset function  𝑓: 𝐴 → 𝐵, is injective, surjective and bijective 

respectively, then 𝑓(𝐴) ⊆ 𝐵, 𝐵 ⊆ 𝑓(𝐴) 𝑎𝑛𝑑 𝑓(𝐴) = 𝐵  respectively. 

Proof: Let the mset function  𝑓: 𝐴 → 𝐵 be injective, then 

𝑓: 𝐴∗ → 𝐵∗  is injective         (i) 

Then ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑓(𝑥))        (ii) 

𝐶𝐴(𝑥) = 𝐶𝑓(𝐴)(𝑓(𝑥)) by definition (2.3.1 and 2.3.5)     (iii)  

Now substituting (iii) in (ii), we have  𝐶𝑓(𝐴)(𝑓(𝑥)) ≤ 𝐶𝐵(𝑓(𝑥))    (iv) 

Thus 𝑓(𝐴) ⊆ 𝐵.(from iv) 

Again, let the mset function  𝑓: 𝐴 → 𝐵 be surjective, then 

𝐶𝐴(𝑥) = 𝐶𝑓(𝐴)(𝑓(𝑥)) ∀ 𝑥 ∈ 𝐴∗ (by definition 2.3.1)     (v) 

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≥ 𝐶𝐵(𝑓(𝑥)) by definition 2.3.7     (vi) 

Substituting (v) in (vi) we get  𝐶𝑓(𝐴)(𝑓(𝑥)) ≥ 𝐶𝐵(𝑓(𝑥))     (vii) and  

𝐵 ⊆ 𝑓(𝐴). (from vii) 

Assuming  𝑓: 𝐴 → 𝐵  be a bijective mset function, then it is both injective and surjective 

In particular 

𝑓(𝐴) ⊆ 𝐵          (viii) and 

𝐵 ⊆ 𝑓(𝐴)          (ix) from the 

above results. 

Thus, from (viii) and (ix) above, it is clear that 

𝑓(𝐴) = 𝐵. 

 Proposition 3.3: Let 𝐴, 𝐵 , 𝐶 ∈ 𝑀(𝑋), if  𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶  are injective mset functions, then  

𝑔ᴏ𝑓: 𝐴 → 𝐶 is injective. 

Proof: Supposing 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are injective mset functions, then  
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 𝑓: 𝐴∗ → 𝐵∗ and 𝑔: 𝐵∗ → 𝐶∗      (i) are injective and  

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≤ 𝐶𝐵( 𝑓(𝑥))     (ii) 

∀𝑦(𝑦 ∈ 𝐵∗ ⇒ 𝐶𝐵(𝑦) ≤ 𝐶𝐶( 𝑔(𝑦))     (iii) 

Since 𝑓(𝑥) ∈ 𝐵∗, we have  

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≤ 𝐶𝐵( 𝑓(𝑥)) ≤ 𝐶𝐶( 𝑔(𝑓(𝑥)))(from (ii) and (iii)) 

In particular, 

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≤ 𝐶𝐶( 𝑔ᴏ𝑓(𝑥)))     (iv) 

But from (i) the composition 

𝑔ᴏ𝑓: 𝐴∗ → 𝐶∗ is injective      (v) 

Now from (iv) and (v) above, we have 

𝑔ᴏ𝑓: 𝐴 → 𝐶  injective as well. 

Proposition 3.4: Let 𝐴, 𝐵, 𝐶 ∈ 𝑀(𝑋), if  𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶  are surjective mset functions, then  

𝑔ᴏ𝑓: 𝐴 → 𝐶 is surjective. 

Proof: Supposing 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are surjective mset functions, then  

 𝑓: 𝐴∗ → 𝐵∗ and 𝑔: 𝐵∗ → 𝐶∗      (i) are surjective and  

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≥ 𝐶𝐵( 𝑓(𝑥))     (ii) 

∀𝑦(𝑦 ∈ 𝐵∗ ⇒ 𝐶𝐵(𝑦) ≥ 𝐶𝐶( 𝑔(𝑦))     (iii) 

Since 𝑓(𝑥) ∈ 𝐵∗, we have  

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≥ 𝐶𝐵( 𝑓(𝑥)) ≥ 𝐶𝐶( 𝑔(𝑓(𝑥)))(from (ii) and (iii)) 

In particular, 

∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) ≥ 𝐶𝐶( 𝑔ᴏ𝑓(𝑥)))     (iv) 

But from (i) the composition 

𝑔ᴏ𝑓: 𝐴∗ → 𝐶∗ is surjective      (v) 

Now from (iv) and (v) above, we have 

𝑔ᴏ𝑓: 𝐴 → 𝐶  also surjective. 

Proposition 3.5: Let 𝐴, 𝐵, 𝐶 ∈ 𝑀(𝑋), if  𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶  are bijective mset functions, then we 

show that  𝑔ᴏ𝑓: 𝐴 → 𝐶 is bijective. 

Proof: Supposing  𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are bijective mset functions, then we show that 𝑔ᴏ𝑓: 𝐴 → 𝐶 is 

bijective. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022                                                                   1165 
ISSN 2229-5518  
 

IJSER © 2022 

http://www.ijser.org 

Clearly from the hypothesis and proposition 3.2, 𝑓(𝐴) = 𝐵 and 𝑔(𝐵) = 𝐶. 

Thus𝑔ᴏ𝑓(𝐴) = 𝑔(𝑓(𝐴)) = 𝑔(𝐵) = 𝐶. 

Hence 𝑔ᴏ𝑓(𝐴) = 𝐶. 

Proposition 3.6: Let 𝐴 ∈ 𝑀(𝑋). The identity mset function   𝐼𝐴: 𝐴 → 𝐴 is bijective. 

Proof: For any 𝐴 ∈ 𝑀(𝑋), the identity mset function   𝐼𝐴: 𝐴 → 𝐴 is just the mset function   𝐼𝐴: 𝐴 → 𝐴 such 

that  𝐼𝐴: 𝐴∗ → 𝐴∗ is identity (by definition 2.3.4) 

In particular, the identity mset function  𝐼𝐴: 𝐴 → 𝐴 is just the identity function 𝐼𝐴: 𝐴∗ → 𝐴∗ (i) 

But the identity function  𝐼𝐴: 𝐴∗ → 𝐴∗ is bijective                          (ii)  

Now we show that ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) = 𝐶𝐼𝐴
( 𝐼𝐴(𝑥))  

 Since 𝐼𝐴(𝑥) = 𝑥, we have  (by definition) 

Thus,𝐶𝐴(𝑥) = 𝐶𝐴(𝐼𝐴(𝑥))         (iii) 

Thus from (ii) and (iii) above, it is clear that  𝐼𝐴  is bijective. 

Proposition 3.7: Let 𝐴, 𝐵 ∈ 𝑀(𝑋) and  let  𝑓: 𝐴 → 𝐵  be an mset function. If  𝐴1 ⊆ 𝐴 and  𝐴2 ⊆ 𝐴, Also  

𝐵1 ⊆ 𝐵 and  𝐵2 ⊆ 𝐵 such that  𝑓: 𝐴1 →  𝐵1 and  𝑓: 𝐴2 →  𝐵2, are mset functions, then  

(i) 𝐴1 ⊆ 𝐴2 ⇒ 𝑓(𝐴1) ⊆ 𝑓(𝐴2) 

(ii) 𝑓(𝐴1 ∪ 𝐴2) ⊇ 𝑓(𝐴1) ∪ 𝑓(𝐴2) 

(iii) 𝑓(𝐴1 ∩ 𝐴2) ⊆ 𝑓(𝐴1) ∩ 𝑓(𝐴2) 

(iv) 𝑓(𝐴1) ∪ 𝑓(𝐴2) ⊆ 𝑓(𝐴1 ⊕ 𝐴2) 

 

(i) Proof : Supposing  𝐴1 ⊆ 𝐴2  then  𝐶𝐴1
(𝑥) ≤ 𝐶𝐴2

(𝑥) ∀ 𝑥 ∈ 𝑋        (i) by definition 2.1.5 

 Since   𝑓: 𝐴1 →  𝐵1 and 𝑓: 𝐴2 →  𝐵2, are mset functions, then   

 𝐶𝐴1
(𝑥)  = 𝐶𝑓(𝐴1)(𝑓(𝑥)) , 𝐶𝐴2

(𝑥)  = 𝐶𝑓(𝐴2)(𝑓(𝑥))  ∀ 𝑥 ∈ 𝑋.          (ii) 

In particular, from (i) and (ii) it implies that  𝐶𝑓(𝐴1)(𝑓(𝑥)) ≤ 𝐶𝑓(𝐴2)(𝑓(𝑥)) ∀ 𝑥 ∈ 𝑋 

Thus 𝑓(𝐴1) ⊆ 𝑓(𝐴2). 

(ii) Proof : Let  𝐴1, 𝐴2 ⊆ 𝐴 and  𝐵1, 𝐵2 ⊆ 𝐵. 

 𝐶𝐴1
(𝑥) ≤ max {𝐶𝐴1

(𝑥), 𝐶𝐴2
(𝑥)}  and  𝐶𝐴2

(𝑥) ≤ max {𝐶𝐴1
(𝑥), 𝐶𝐴2

(𝑥)},  

thus  𝐴1 ⊆ 𝐴1 ∪ 𝐴2 and  𝐴2 ⊆ 𝐴1 ∪ 𝐴2 and  

𝐴1 ⊆ 𝐴1 ∪ 𝐴2   ⇒ 𝑓(𝐴1) ⊆ 𝑓(𝐴1 ∪ 𝐴2) 

𝐴2 ⊆ 𝐴1 ∪ 𝐴2   ⇒ 𝑓(𝐴2) ⊆ 𝑓(𝐴1 ∪ 𝐴2) from (i) above 

Therefore   𝑓(𝐴1) ∪ 𝑓(𝐴2) ⊆ 𝑓(𝐴1 ∪ 𝐴2)  

(iii) Proof : Let  𝐴1, 𝐴2 ⊆ 𝐴 and  𝐵1, 𝐵2 ⊆ 𝐵. 
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 𝐶𝐴1
(𝑥) ≥ min {𝐶𝐴1

(𝑥), 𝐶𝐴2
(𝑥)}  and  𝐶𝐴2

(𝑥) ≥ min {𝐶𝐴1
(𝑥), 𝐶𝐴2

(𝑥)},  

Thus  𝐴1 ⊇ 𝐴1 ∩ 𝐴2 and  𝐴2 ⊇ 𝐴1 ∩ 𝐴2. 

𝐴1 ⊇ 𝐴1 ∩ 𝐴2   ⇒ 𝑓(𝐴1) ⊇ 𝑓(𝐴1 ∩ 𝐴2) 

𝐴2 ⊇ 𝐴1 ∩ 𝐴2   ⇒ 𝑓(𝐴2) ⊇ 𝑓(𝐴1 ∩ 𝐴2) from (i) above 

Therefore   𝑓(𝐴1) ∩ 𝑓(𝐴2) ⊇ 𝑓(𝐴1 ∩ 𝐴2) 

(iv) Proof : Let  𝐴1, 𝐴2 ⊆ 𝐴 and  𝐵1, 𝐵2 ⊆ 𝐵. 

𝐴1 ⊆ 𝐴1 + 𝐴2   ⇒ 𝑓(𝐴1) ⊆ 𝑓(𝐴1 + 𝐴2) 

𝐴2 ⊆ 𝐴1 + 𝐴2   ⇒ 𝑓(𝐴2) ⊆ 𝑓(𝐴1 + 𝐴2) 

Thus  𝑓(𝐴1) ∪ 𝑓(𝐴2) ⊆ 𝑓(𝐴1 + 𝐴2). 

Again if  𝐴1 ∩ 𝐴2 ⊆ 𝐴1 + 𝐴2 

Therefore 𝑓(𝐴1 ∩ 𝐴2) ⊆ 𝑓(𝐴1 + 𝐴2)  from (i) above, then 

𝑓(𝐴1 ∩ 𝐴2) ⊆ 𝑓(𝐴1 + 𝐴2) ⊇ 𝑓(𝐴1) ∪ 𝑓(𝐴2) 

Hence the result. 

Proposition 3.8: Let  𝑓: 𝐴 → 𝐵 be a bijective mset function, then 

(a) 𝑓−1ᴏ𝑓 = 𝐼𝐴 

(b) 𝑓ᴏ𝑓−1 = 𝐼𝐵 

Where 𝐼𝐴: 𝐴 → 𝐴 is iidentity on 𝐴. 

 

(a) Proof: Assuming 𝑓: 𝐴 → 𝐵 a bijective mset function, then we have  

𝑓: 𝐴∗ → 𝐵∗ Bijective       (i)  

 ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) = 𝐶𝐵(𝑓(𝑥))     (ii) by definition 2.3.9 

  𝑓−1: 𝐵 → 𝐴  is a bijective (from proposition 2.3.1)    (iii) 

In particular 

𝑓−1: 𝐵∗ → 𝐴∗  is bijective       (iv) 

Now from (i) and (iv) above, we have  

𝑓−1ᴏ𝑓: 𝐴∗ → 𝐴∗ is identity in 𝐴∗ 

Thus  𝑓−1ᴏ𝑓 = 𝐼𝐴 (by definition 2.3.4) 

and similarly for (b) 

Proposition 3.9: Let 𝐴, 𝐵 ∈ 𝑀(𝑋). If  𝑓: 𝐴 → 𝐵 is bijective, then  (𝑓−1)−1 = 𝑓. 

Proof: Let  𝑓: 𝐴 → 𝐵 be a bijective mset function, then  𝑓−1: 𝐵 → 𝐴  is a bijective mset function(by 

proposition 3.1) 
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In particular  𝑓: 𝐴∗ → 𝐵∗ and  𝑓−1: 𝐵∗ → 𝐴∗ are bijectives( by definition 2.3.9)  

Now since  𝑓−1: 𝐵∗ → 𝐴∗ is bijective, we have 

(𝑓−1)−1: 𝐴∗ → 𝐵∗ also bijective (proposition 3.1) 

Therefore    (𝑓−1)−1 = 𝑓. 

Hence the result. 

Proposition 3.10: Let  𝐴, 𝐵, 𝐶 ∈ 𝑀(𝑋). If  𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are constant mset functions, then 𝑔ᴏ𝑓 

is a constant mset function. 

Proof: We need to show that 𝑔ᴏ𝑓: 𝐴 → 𝐶 is a constant mset function.  

Now 𝑓: 𝐴∗ → 𝐵∗ and 𝑔: 𝐵∗ → 𝐶∗ are constant functions (by hypothesis)  

In particular 𝑔ᴏ𝑓: 𝐴∗ → 𝐶∗ is constant. 

Thus 𝑔ᴏ𝑓 is a constant mset function (by definition 2.3.3). 

Proposition 3.11: Let 𝐴, 𝐵 ∈ 𝑀(𝑋), such that the mset function  𝑓: 𝐴 → 𝐵 is bijective, then  𝑓: 𝐴𝑛 → 𝐵𝑛 

is bijective for 𝑛 ∈ {0,1,2, … } 

Proof: Let 𝑓: 𝐴 → 𝐵 be a bijective mset function, then  𝑓: 𝐴∗ → 𝐵∗ is bijective  (i) and 

 ∀𝑥(𝑥 ∈ 𝐴∗ ⇒ 𝐶𝐴(𝑥) = 𝐶𝐵(𝑓(𝑥)))        (ii) 

We are to show that  𝑓: 𝐴𝑛 → 𝐵𝑛 is bijective for 𝑛 ∈ {0,1,2, … } 

Now from proposition 2.2.10,  𝐴∗ = (𝐴𝑛)∗. Similarly  𝐵∗ = (𝐵𝑛)∗ and hence   

𝑓: (𝐴𝑛)∗ → (𝐵𝑛)∗ is just the function 𝑓: 𝐴∗ → 𝐵∗.                      (iii) 

Thus 𝑓: (𝐴𝑛)∗ → (𝐵𝑛)∗ is bijective since 𝑓: 𝐴∗ → 𝐵∗ is bijective.                    (iv) 

Now we show that   ∀𝑥(𝑥 ∈ (𝐴𝑛)∗ = 𝐴∗ ⇒ 𝐶𝐴𝑛(𝑥) = 𝐶𝐵𝑛(𝑓(𝑥))) 

Also from (ii) and definition 2.2.9 𝐶𝐴𝑛(𝑥) = (𝐶𝐴(𝑥))𝑛 = (𝐶𝐵(𝑓(𝑥)))𝑛 = 𝐶𝐵𝑛(𝑓(𝑥)). 

In particular  𝐶𝐴𝑛(𝑥) = 𝐶𝐵𝑛(𝑓(𝑥))       (v) 

It is clear from (iv) and (v) above that  

𝑓: 𝐴𝑛 → 𝐵𝑛 is bijective for 𝑛 ∈ {0,1,2, … } 

Proposition 3.12: Let  𝐴, 𝐵 ∈ 𝑀(𝑋), then the similarity relation ~  is an equivalence relation. 

Proof: Supposing  𝐴 ∈ 𝑀(𝑋), then  𝐴~𝐴 via the identity mset function (proposition 3.6 ). Thus ~ is 

reflexive on  𝑀(𝑋). 

Also, given that  𝐴, 𝐵 ∈ 𝑀(𝑋) , then the similarity relation  𝐴~𝐵  ⇒ 𝐵~𝐴  via the inverse of a bijective 

mset function (proposition 3.1). Thus ~ is symmetric on  𝑀(𝑋). 
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Again, suppose that  𝐴, 𝐵, 𝐶 ∈ 𝑀(𝑋) with   𝐴~𝐵  and  𝐵~𝐶, then 𝐴~𝐶  via the composition of bijective 

mset functions (proposition 3.5). Thus ~ is transitive on  𝑀(𝑋). 

In particular ~ is an equivalence relation on  𝑀(𝑋). 

Proposition 3.13: Let 𝐴, 𝐵 ∈ 𝑀(𝑋).  If  𝐴 ≼ 𝐵 and that  𝐵 ≼ 𝐶 .Then 𝐴 ≼ 𝐶. 

Proof: Clearly 𝐴 ≼ 𝐶. (From Definition 2.3.14 and proposition 3.3). 

Proposition 3.14: Let  𝐴, 𝐵 ∈ 𝑀(𝑋). Then  𝐴~𝐵 ⇒ 𝐴 ≼ 𝐵. 

Proof: Supposing 𝐴~𝐵.  

Let 𝑓: 𝐴 → 𝐵 be a bijection (by definition 2.3.9), then 𝑓: 𝐴 → 𝐵 is both an injection and surjection(by 

definition 2.3.9). 

Thus 𝐴 ≼ 𝐵. (by definition 2.3.13). 

In particular, 𝐴~𝐵 ⇒ 𝐴 ≼ 𝐵. 

Proposition 3.15: Let , 𝐵 ∈ 𝑀(𝑋) . If 𝐴~𝐵, then  𝐴 ≼ 𝐵 and  𝐵 ≼ 𝐴 .  

Proof: Supposing 𝐴~𝐵. Then 𝐵~𝐴.(from proposition 3.12) 

𝐴~𝐵 ⇒ 𝐴 ≼ 𝐵  and 𝐵~𝐴 ⇒ 𝐵 ≼ 𝐴 (from proposition 3.13).  

However, the converse need not hold For example, let  𝐴 = {𝑥1, 𝑥2, 𝑥3 … }2,4,6,…, and  𝐵 =

{𝑦0, 𝑦1, 𝑥2 … }1,3,5,… be msets. 

The function 𝑓: 𝐴∗ → 𝐵∗ defined by 𝑓(𝑥𝑛) = 𝑦𝑛 makes  𝑓: 𝐴 → 𝐵 an injection so that 𝐴 ≼ 𝐵. 

Also the function  𝑔: 𝐵∗ → 𝐴∗ defined by  𝑔(𝑦𝑛) = 𝑥𝑛+1  makes  𝑔: 𝐵 → 𝐴, the inverse mset function, an 

injection so that  𝐵 ≼ 𝐴. 

However, there cannot be a bijection  ℎ: 𝐴 → 𝐵 since all multiplicities in  𝐴 are even and those in   𝐵 are 

odd.  

4. Conclusions. 

We have introduced mset functions in a unique way. We have shown that an mset function is bijective if 

and only if its inverse function is bijective. It has also been established that the composition of injective, 

surjective and bijective mst functions is injective, surjective and bijective respectively. We have also 

shown that the identity mset function is bijective. so also the composition of constant msets function is 

also constant. We have shown that the bijectiveness of mset function is preserved on raising to 

arithmetic power of msets. similarity relations was introduced and shown that it is an equivalence 

relation and that similarity relation implies dominance relation. However, Schroider Bernstein theorem 

for mset functions fails and consequently the dominance relation cannot be a partial order relative to 

similarity relation on the class 𝑀(𝑋). 

 Further research direction  

The definition of countability of an mset as well as the study of equivalent classes of similarity relation in 

𝑀(𝑋) looks promising and challenging.  
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